Биологическая совместимость

(Январь 2014)

На стыке биологии, информатики и квантовой физики в последние годы отмечается череда знаменательных достижений. При их рассмотрении в совокупности, междисциплинарные открытия и успехи сулят революционные перемены в каждой из соприкасающихся областей, а также в общем понимании человеком природы и себя самого…

sm.cover.600

Все — это информация

Один из патриархов теоретической физики XX века, Джон Арчибальд Уилер (1911–2008), прожил на редкость долгую и плодотворную жизнь. Можно сказать, это была жизнь, насыщенная удивительными научными прозрениями, играми с великими идеями и близкими знакомствами со множеством выдающихся ученых из разных исторических эпох.

В юные годы Уилеру посчастливилось работать под началом отца квантовой физики Нильса Бора. В последующие времена уже ему самому многократно доводилось быть наставником для нескольких поколений ученых, знаменитых достижениями подлинно мирового уровня.

Достаточно упомянуть, что среди аспирантов, готовивших свои диссертации под руководством Джона Уилера, были отец квантовой электродинамики Ричард Фейнман (1930-40-е), отец концепции многомирия или мультиверса Хью Эверетт (1950-е), отец теоретико-информационного подхода к черным дырам Яков Бекенштейн (1970-е), отец квантового компьютинга Дэвид Дойч (1980-е).

(Все эти «отцы» великих теорий, ясное дело, были отнюдь не единственными в своем роде, но уже сам перечень имен хорошо отражает плотность тех «полей и фонтанов» научной креативности, что всегда были характерны для Уилера и его окружения.)

Читать «Биологическая совместимость» далее

Био-Инфо-Технологии

Краткая подборка сюжетов из области науки биомиметики – как своего рода «разогрев» перед большим материалом об удивительных новых открытиях на стыке информатики, физики и биологии.

Глазастые руки-ноги

(Август 2001)

brittlestar-clr

Американские исследователи из Bell Labs совместно с израильскими коллегами из Вейцмановского института обнаружили удивительные глаза у иглокожих морских животных офиур, близких родственников морских звезд и голотурий, т.е. такого типа беспозвоночных существ, у которых органы зрения в общепринятом понимании отсутствуют в принципе (как было принято считать).

Причем выявленные в скелете офиур массивы микролинз, отвечающих за «офиурное зрение», оказались столь совершенными, что превосходят по своим качествам лучшие достижения современных оптико-коммуникационных технологий человека.

Читать «Био-Инфо-Технологии» далее

Есть ли жизнь на Марсе?

(Март 2005)

Вопрос, вынесенный в заголовок, уже настолько истерт и заштампован, что и воспринимается ныне большинством людей исключительно юмористически.

q-Life-on-Mars

Как бы там ни было, современная наука уверенного ответа на эту загадку пока так и не нашла, а в средствах массовой информации то и дело появляются бойкие статьи с заголовками вроде такого, совсем недавнего: «В пещерах Марса есть жизнь, утверждают ученые из NASA»  (www.newsru.com, 17 февраля 2005).

Сразу надо отметить, что заголовок этот безбожно врет — в действительности ученые из NASA ничего подобного не утверждают, хотя и нашли, как полагают, серьезные аргументы в поддержку гипотезы о возможности микробиологической жизни в современных суровейших условиях планеты.

Ну а поскольку прошедший (2004) год для науки стал, бесспорно, одним из наиболее плодотворных в изучении Марса, то имеет смысл поподробнее разобраться — что там происходит с поисками жизни пусть и на далекой, но все-таки одной из ближайших к нашей Земле планете.

Тем более, что сейчас ее исследует беспрецедентно большое количество аппаратов: два спутника на орбите и еще два робота-марсохода на поверхности. И количество открытий, уже сделанных этими аппаратами, не может не впечатлять.

Читать «Есть ли жизнь на Марсе?» далее

Великий инакомыслящий

(Март 2001)

Мало кому в двадцатом веке удавалось с таким постоянством бросать вызов человеческому разуму, как это делал Фред Хойл и его многочисленные книги.

Fred-H

В февральском, 2001 года номере журнала Scientific American опубликована заметка «Большой взрыв: шутка или истина?», авторы которой в очередной раз обращаются к одной из самых сложных, возможно, проблем современной космологии да и всей науки вообще: «Как произошла наша Вселенная?».

Ответа на этот вопрос, понятное дело, статья не дает, но зато приводится в ней один весьма занятный факт, редко кем упоминаемый, а потому, очевидно, и малоизвестный.

Термин «большой взрыв», которым именуется наиболее общепринятая на сегодняшний день теория происхождения всего сущего, появился на свет в начале 1950 года.

Подарил же его миру, сам того не желая, тогда еще сравнительно молодой английский космолог с весьма оригинальной и впечатляюще четкой манерой суждений, ныне известный всему миру как сэр Фред Хойл — патриарх астрофизики, талантливый математик, автор более 40 примечательных книг, от научно-популярных и чисто научных монографий до фантастических романов, театральных пьес и даже либретто для оперы.

fred_hoyle_bbc

В 1950-м году до всего этого было еще далеко, однако уже тогда проявлявший свои разносторонние таланты Хойл был не только ученым в Кембридже, но также автором и ведущим цикла субботних радиопередач по Третьей программе Би-би-си. Эти посвященные науке передачи возникли на радио довольно спонтанно, однако имели бешеный успех у публики и входили в верхние строчки национального рейтинга популярности.

И вот в суматошной обстановке последней передачи цикла, буквально на лету, у Хойла и родился глумливый термин «big bang», или «большой взрыв». В намерение ученого ни в коем случае не входило одобрение этой теоретической концепции. Совсем даже напротив — под этим несерьезным именем Хойл намеревался ее похоронить.

Читать «Великий инакомыслящий» далее

Биологический нанокомпьютер

(Впервые опубликовано – февраль 2002)

DNA1

Выдающиеся способности биомолекул к хранению и обработке информации уже около десятилетия привлекают внимание ученых, пытающихся отыскать наиболее достойную замену компьютерным микросхемам на основе кремния. Основные усилия сфокусированы на ДНК – знаменитой молекуле в форме двойной спирали, которая присутствует в ядрах всех живых клеток и способна, занимая объем в один кубический сантиметр, содержать в себе информации больше, чем триллион компакт-дисков.

Постепенно двигаясь по пути создания программируемых компьютеров на основе молекул ДНК, ученые-исследователи приближают эпоху, когда живые «вычислительные машины» смогут умещаться в одной клетке человеческого организма. Подобный «биологический нанокомпьютер» будет настолько мал, что триллион (1 000 000 000 000) таких компьютеров сможет работать одновременно в единственной капле воды.

Теоретические расчеты дают основания предполагать, что так называемые ДНК-компьютеры в конечном счете способны превзойти кремниевые чипы в решении массивно-параллельных задач, требующих одновременного выполнения множества сходных операций. Но еще более заманчивые перспективы биологические нанокомпьютеры сулят в специальных приложениях, таких как медицина и фармакология. Читать «Биологический нанокомпьютер» далее

Квантовый биокомпьютер

(Впервые опубликовано – июнь 2012)

Прогресс компьютерной индустрии, последние полвека обеспечиваемый постоянной миниатюризацией элементов микросхем, неотвратимо приближается к пределу возможностей кремниевых технологий. Иначе говоря, явно пора подыскивать альтернативные модели вычислителей.

QuantumBiology

На смену кремниевым чипам

По давно уже сложившейся традиции (и вследствие естественных технических причин), активность в области высокопроизводительных вычислений – или кратко суперкомпьютеров – всегда сфокусирована на самых передовых компьютерных технологиях человечества.

Промежуток времени, разделяющий те моменты, когда производительность наиболее мощных суперкомпьютеров планеты становится доступна вполне обычному настольному или мобильному электронному устройству, может быть длиннее или короче. Но общее правило остается неоспоримым: то, что вчера считалось пределом вычислительных возможностей, завтра становится общедоступной технологией.

Формулируя чуть иначе, тенденции, доминирующие ныне в узкоспециальной области суперкомпьютерных монстров, занимающих собой здоровенные помещения, на самом деле важны и интересны абсолютно для всех, кто уже не мыслит свою жизнь без компьютерной техники. И именно поэтому особого внимания заслуживают прогнозы экспертов относительно недалекого будущего суперкомпьютеров.

На проходивший в июне в Гамбурге, Германия, очередной Международной суперкомпьютерной конференции ISC ’12 (www.isc-events.com/isc12/) в качестве одного из основных докладчиков выступал американский ученый Томас Стерлинг. Среди специалистов он широко известен как «отец» популярной кластерной архитектуры Beowulf и как один из создателей самой быстрой на сегодня вычислительной техники петафлопсного масштаба (1 петафлопс = 1015 FLOPS, т. е. квадриллион или миллион миллиардов операций с плавающей запятой в секунду).

Доклад Стерлинга на конференции был посвящен общему обзору текущих достижений и тенденций в отрасли, однако для данной статьи особый интерес представляет авторитетное мнение специалиста относительно грядущих перспектив суперкомпьютинга. Непосредственно перед ISC ’12 в компьютерной прессе появилось обширное интервью Томаса Стерлинга, в котором он аргументированно обрисовал неблестящее, мягко говоря, будущее суперкомпьютеров на основе кремниевых чипов.

Суть прогноза сводится к тому, что технологии полупроводниковых микросхем, стабильно развивающие компьютерную индустрию вот уже около полувека, ныне быстро приближаются к своим физическим, идеологическим и конструктивным пределам.

Согласно выводам Стерлинга, порогом производительности для кремниевых чипов станет следующий, экзафлопсный рубеж (порядка квинтиллионов или 1018 операций в секунду). А для того, чтобы двигаться дальше, ученым и инженерам придется создавать нечто в корне иное: «Возможно, это будет что-то типа квантового компьютинга, метафорического компьютинга, или биологического компьютинга. Но что бы там ни было, это будет не то, чем мы занимались последние семь десятилетий»…

Все, кто интересуется новыми компьютерными технологиями, наверняка слышали или читали о некоторых из упомянутых Стерлингом направлениях исследований в области высокопроизводительных вычислений.

Больше всего говорят о «квантовых компьютерах», оперирующих регистрами кубитов на основе законов квантовой физики. Заметно меньше – о «классических» биологических вычислителях, построенных на основе манипуляций сложными биомолекулами вроде ДНК. Практически ничего не публикуется, правда, об интригующей технологии «метафорический компьютинг» на базе эффектов нелинейной оптики, но это тема совсем другого разговора (подробности см тут:  kiwiarxiv.wordpress.com/2013/04/28/201206/).

Здесь же будет рассказано про еще одно – любопытное и перспективное – направление научных исследований под названием «квантовая биология». Важная роль, которую, как выясняется, играют эффекты квантовой физики в жизни биологических систем, ныне расценивается как одно из наиболее неожиданных и волнующих открытий последних лет в области биологии.

Пока что это открытие плохо стыкуется с доминирующими в физике взглядами на мир, однако стабильно растущее число экспериментальных свидетельств и теоретических исследований понемногу укрепляют фундамент квантовой биологии. Новой области, сулящей не только лучшее понимание природы, но и, среди прочего, существенный прогресс в сферах компьютеров, связи и передачи энергии. Читать «Квантовый биокомпьютер» далее